Topology and the approximation of norms

Richard Smith

Joint work with V. Bible (UCD) and S. Troyanski (Uni. Murcia and Math. Inst. BAS)

5th March 2018

Richard Smith (mathsci.ucd.ie/~rsmith) (UCD)

Э.

< = > < = >

< □ ▶ < @ ▶

Smooth and polyhedral norms

Let $(X, \|\cdot\|)$ be a real Banach space.

32

5900

Smooth and polyhedral norms

Let $(X, \|\cdot\|)$ be a real Banach space.

Definition

Let $k \in \mathbb{N} \cup \{\infty\}$. The norm $\|\cdot\|$ is *C^k*-smooth if it is *k*-times continuously Fréchet differentiable on $X \setminus \{0\}$.

э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 >

Smooth and polyhedral norms

Let $(X, \|\cdot\|)$ be a real Banach space.

Definition

Let $k \in \mathbb{N} \cup \{\infty\}$. The norm $\|\cdot\|$ is *C^k*-smooth if it is *k*-times continuously Fréchet differentiable on $X \setminus \{0\}$.

Definition

The norm $\|\cdot\|$ is **polyhedral** if, given any $E \subseteq X$, dim $E < \infty$, there exist $f_1, \ldots, f_n \in S_{X^*}$ (which depend on *E*) such that

$$\|x\| = \max_{1 \leq i \leq n} |f_i(x)|, \qquad x \in E.$$

- 22-

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Smooth facts

• If X^* is separable then X is isomorphically C^1 -smooth.

32

< I > < I >

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.

32

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< I > < I >

< □ ▶

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.
- Solution Every isomorphically C^{∞} -smooth space either contains a copy of c_0 or ℓ_p , for some even integer p.

3

SQ Q

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.
- Solution Every isomorphically C^{∞} -smooth space either contains a copy of c_0 or ℓ_p , for some even integer p.
- Every isomorphically C¹-smooth space is Asplund.

SQ Q

A I > A I >

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.
- Solution Every isomorphically C^{∞} -smooth space either contains a copy of c_0 or ℓ_p , for some even integer p.
- Every isomorphically C¹-smooth space is Asplund.

Polyhedral facts

• $(c_0, \|\cdot\|_{\infty})$ is the archetypal polyhedral space.

32

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.
- Solution Every isomorphically C^{∞} -smooth space either contains a copy of c_0 or ℓ_p , for some even integer p.
- Every isomorphically C¹-smooth space is Asplund.

Polyhedral facts

- $(c_0, \|\cdot\|_{\infty})$ is the archetypal polyhedral space.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically polyhedral.

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.
- Solution Every isomorphically C^{∞} -smooth space either contains a copy of c_0 or ℓ_p , for some even integer p.
- Every isomorphically C¹-smooth space is Asplund.

Polyhedral facts

- $(c_0, \|\cdot\|_{\infty})$ is the archetypal polyhedral space.
- ② If $\|\cdot\|$ has a countable boundary then X is isomorphically polyhedral.
- Solution Every isomorphically polyhedral space is c_0 -saturated and Asplund.

31

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Smooth facts

- If X^* is separable then X is isomorphically C^1 -smooth.
- 2 If $\|\cdot\|$ has a countable boundary then X is isomorphically C^{∞} -smooth.
- Solution Every isomorphically C^{∞} -smooth space either contains a copy of c_0 or ℓ_p , for some even integer p.
- Every isomorphically C¹-smooth space is Asplund.

Polyhedral facts

- $(c_0, \|\cdot\|_{\infty})$ is the archetypal polyhedral space.
- ② If $\|\cdot\|$ has a countable boundary then X is isomorphically polyhedral.
- Solution Every isomorphically polyhedral space is c_0 -saturated and Asplund.
- No dual space is isomorphically polyhedral.

32

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let **P** denote some property of norms e.g., C^k -smoothness or polyhedrality.

3

< I > < I >

< □ ▶

A.

Let **P** denote some property of norms e.g., C^k -smoothness or polyhedrality.

Definition

We say that $\|\cdot\|$ can be **approximated** by norms having **P** if, given $\varepsilon > 0$, there exists $\||\cdot\||$ having **P**, such that

 $\|x\| \leq \|\|x\|\| \leq (1+\varepsilon) \|x\|$ for all $x \in X$.

32

SQ Q

· < ≣ ▶ < ≣ ▶

Let **P** denote some property of norms e.g., C^k -smoothness or polyhedrality.

Definition

We say that $\|\cdot\|$ can be **approximated** by norms having **P** if, given $\varepsilon > 0$, there exists $\||\cdot\||$ having **P**, such that

 $\|x\| \leq \|\|x\|\| \leq (1+\varepsilon) \|x\|$ for all $x \in X$.

Theorems

 If X is separable and admits a polyhedral norm, then all norms on X can be approximated by polyhedral norms (Deville, Fonf, Hájek 1997).

S a A

< ロ > < 同 > < 三 > < 三 >

Let **P** denote some property of norms e.g., C^k -smoothness or polyhedrality.

Definition

We say that $\|\cdot\|$ can be **approximated** by norms having **P** if, given $\varepsilon > 0$, there exists $\||\cdot\||$ having **P**, such that

 $\|x\| \leq \|\|x\|\| \leq (1+\varepsilon) \|x\|$ for all $x \in X$.

Theorems

- If X is separable and admits a polyhedral norm, then all norms on X can be approximated by polyhedral norms (Deville, Fonf, Hájek 1997).
- The same holds if 'polyhedral' above is replaced by 'C^k-smooth' (Hájek, Talponen 2013).

SQ Q

< ロ > < □ > < □ > < □ > < □ > <

Let **P** denote some property of norms e.g., C^k -smoothness or polyhedrality.

Definition

We say that $\|\cdot\|$ can be **approximated** by norms having **P** if, given $\varepsilon > 0$, there exists $\||\cdot\||$ having **P**, such that

 $\|x\| \leq \|\|x\|\| \leq (1+\varepsilon) \|x\|$ for all $x \in X$.

Theorems

- If X is separable and admits a polyhedral norm, then all norms on X can be approximated by polyhedral norms (Deville, Fonf, Hájek 1997).
- The same holds if 'polyhedral' above is replaced by 'C^k-smooth' (Hájek, Talponen 2013).
- Let Γ be a set. All norms on $c_0(\Gamma)$ can be approximated by polyhedral norms and C^{∞} -smooth norms (Bible, S 2016).

- 32

<ロ > < 同 > < 同 > < 三 > < 三 > <

Topological methods have been used to solve problems and prove characterisation theorems about locally uniformly convex norms or strictly convex norms.

↓

32

A I > A I >

Topological methods have been used to solve problems and prove characterisation theorems about locally uniformly convex norms or strictly convex norms.

Definition (Fonf, Pallares, S and Troyanski 2014)

Let *X* be a Banach space.

32

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< 3 > 4 3 > 4

< □ ▶

Topological methods have been used to solve problems and prove characterisation theorems about locally uniformly convex norms or strictly convex norms.

Definition (Fonf, Pallares, S and Troyanski 2014)

Let X be a Banach space.

• $E \subseteq X^*$ is *w**-locally relatively norm-compact (*w**-LRC), if given $f \in E$, there is *w**-open $U \subseteq X^*$ such that $f \in U$ and $\overline{E \cap U}^{\|\cdot\|}$ is norm-compact.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Topological methods have been used to solve problems and prove characterisation theorems about locally uniformly convex norms or strictly convex norms.

Definition (Fonf, Pallares, S and Troyanski 2014)

Let X be a Banach space.

- $E \subseteq X^*$ is w^* -locally relatively norm-compact (w^* -LRC), if given $f \in E$, there is w^* -open $U \subseteq X^*$ such that $f \in U$ and $\overline{E \cap U}^{\|\cdot\|}$ is norm-compact.
- 2 E is σ -w*-LRC if $E = \bigcup_{n=1}^{\infty} E_n$, where each E_n is w*-LRC.

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > 、

Topological methods have been used to solve problems and prove characterisation theorems about locally uniformly convex norms or strictly convex norms.

Definition (Fonf, Pallares, S and Troyanski 2014)

Let X be a Banach space.

- $E \subseteq X^*$ is w^* -locally relatively norm-compact (w^* -LRC), if given $f \in E$, there is w^* -open $U \subseteq X^*$ such that $f \in U$ and $\overline{E \cap U}^{\|\cdot\|}$ is norm-compact.
- 2 E is σ -w*-LRC if $E = \bigcup_{n=1}^{\infty} E_n$, where each E_n is w*-LRC.

In many applications, we consider sets that are both σ -*w*^{*}-LRC **and** *w*^{*}-*K*_{σ}.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > .

Examples

• Any relatively norm-compact or w^* -relatively discrete subset is w^* -LRC.

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Examples

- Any relatively norm-compact or w^* -relatively discrete subset is w^* -LRC.
- 2 Any norm- K_{σ} set is σ - w^* -LRC.

Э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Examples

- Any relatively norm-compact or w^* -relatively discrete subset is w^* -LRC.
- 2 Any norm- K_{σ} set is σ - w^* -LRC.
- **3** Let $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$ be a M-basis of a Banach space X.

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

• Any relatively norm-compact or w^* -relatively discrete subset is w^* -LRC.

- 2 Any norm- K_{σ} set is σ - w^* -LRC.
- **③** Let $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$ be a M-basis of a Banach space X. Given *n* ∈ N,

 $\{f \in B_{X^*} : |\operatorname{supp}(f)| = n\},\$

is w^* -LRC, and $\{f \in X^* : \operatorname{supp}(f) \text{ is finite}\}$ is σ - w^* -LRC and w^* - K_{σ} .

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆…

Examples

• Any relatively norm-compact or w^* -relatively discrete subset is w^* -LRC.

- 2 Any norm- K_{σ} set is σ - w^* -LRC.
- Let $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$ be a M-basis of a Banach space X. Given $n \in \mathbb{N}$,

 $\{f \in B_{X^*} : |\operatorname{supp}(f)| = n\},\$

is w^* -LRC, and $\{f \in X^* : \operatorname{supp}(f) \text{ is finite}\}$ is σ - w^* -LRC and w^* - K_{σ} .

If K is a σ -discrete compact space, then the set of Dirac measures

 $\{\pm \delta_t : t \in K\} \subseteq C(K)^*,$

is σ -*w*^{*}-LRC and *w*^{*}-compact.

◆ □ ▶ ∢ □ ▶ ∢ □ ▶ ∢ □ ▶ ↓ □ ▶

Examples

• Any relatively norm-compact or w^* -relatively discrete subset is w^* -LRC.

- 2 Any norm- K_{σ} set is σ - w^* -LRC.
- **③** Let $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$ be a M-basis of a Banach space X. Given *n* ∈ N,

 $\{f \in B_{X^*} : |\operatorname{supp}(f)| = n\},\$

is w^* -LRC, and $\{f \in X^* : \operatorname{supp}(f) \text{ is finite}\}$ is σ - w^* -LRC and w^* - K_{σ} .

If K is a σ -discrete compact space, then the set of Dirac measures

 $\{\pm \delta_t : t \in K\} \subseteq C(K)^*,$

is σ -*w*^{*}-LRC and *w*^{*}-compact.

If E is σ -w*-LRC and w*-K $_{\sigma}$, then so is span(E).

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ●

Definition

Let $(X, \|\cdot\|)$ be a Banach space. A set $B \subseteq B_{X^*}$ is a (James) **boundary** of $(X, \|\cdot\|)$ if, given $x \in X$, there exists $f \in B$ such that $f(x) = \|x\|$.

32.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 同 > < 同 > < 三 > < 三 > 、

Definition

Let $(X, \|\cdot\|)$ be a Banach space. A set $B \subseteq B_{X^*}$ is a (James) **boundary** of $(X, \|\cdot\|)$ if, given $x \in X$, there exists $f \in B$ such that $f(x) = \|x\|$.

Theorem (FPST 2014, Bible 2015)

Let $(X, \|\cdot\|)$ have a boundary that is σ -*w*^{*}-LRC **and** *w*^{*}-*K*_{σ}. Then $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

 $\nabla Q \cap$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $(X, \|\cdot\|)$ be a Banach space. A set $B \subseteq B_{X^*}$ is a (James) **boundary** of $(X, \|\cdot\|)$ if, given $x \in X$, there exists $f \in B$ such that $f(x) = \|x\|$.

Theorem (FPST 2014, Bible 2015)

Let $(X, \|\cdot\|)$ have a boundary that is σ -*w*^{*}-LRC **and** *w*^{*}-*K*_{σ}. Then $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

Testing the hypothesis above can be difficult, and often no boundary of a given norm is σ -*w*^{*}-LRC and *w*^{*}-*K*_{σ}.

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $(X, \|\cdot\|)$ be a Banach space. A set $B \subseteq B_{X^*}$ is a (James) **boundary** of $(X, \|\cdot\|)$ if, given $x \in X$, there exists $f \in B$ such that $f(x) = \|x\|$.

Theorem (FPST 2014, Bible 2015)

Let $(X, \|\cdot\|)$ have a boundary that is σ -*w*^{*}-LRC **and** *w*^{*}-*K*_{σ}. Then $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

Testing the hypothesis above can be difficult, and often no boundary of a given norm is σ -*w*^{*}-LRC and *w*^{*}-*K*_{σ}.

Fact (FPST 2014)

Let $Y \subseteq X^*$ be an infinite-dimensional subspace. Then S_Y is not σ - w^* -LRC.

▲□▶▲□▶▲■▶▲■▶ ■ のQ@

Definition

Let $(X, \|\cdot\|)$ be a Banach space. A set $B \subseteq B_{X^*}$ is a (James) **boundary** of $(X, \|\cdot\|)$ if, given $x \in X$, there exists $f \in B$ such that $f(x) = \|x\|$.

Theorem (FPST 2014, Bible 2015)

Let $(X, \|\cdot\|)$ have a boundary that is σ -*w*^{*}-LRC **and** *w*^{*}-*K*_{σ}. Then $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

Testing the hypothesis above can be difficult, and often no boundary of a given norm is σ -*w*^{*}-LRC and *w*^{*}-*K*_{σ}.

Fact (FPST 2014)

Let $Y \subseteq X^*$ be an infinite-dimensional subspace. Then S_Y is not σ - w^* -LRC.

But sometimes a given norm can be approximated by norms that do have such boundaries.

Richard Smith (mathsci.ucd.ie/~rsmith) (UCD)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

Э.

< ∃ ▶ < ∃ ▶

< □ ▶ < @ ▶

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

• $P_{\alpha}P_{\beta} = 0$ whenever $\alpha \neq \beta$,

э.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

- $P_{\alpha}P_{\beta} = 0$ whenever $\alpha \neq \beta$,
- 2 $\sup(\| {\pmb P}_\gamma \|)_{\gamma \in \Gamma} < \infty$,

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 団 > < 団 > < 団 > < 団 > <

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

- $P_{\alpha}P_{\beta} = 0$ whenever $\alpha \neq \beta$,
- 2 $\sup(\|P_{\gamma}\|)_{\gamma\in\Gamma}<\infty$,
- $\bigcirc X = \overline{\operatorname{span}}^{\|\cdot\|}(P_{\gamma}X)_{\gamma\in\Gamma},$ and

32.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > 、

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

•
$$P_{\alpha}P_{\beta} = 0$$
 whenever $\alpha \neq \beta$,

- 2 $\sup(\|P_{\gamma}\|)_{\gamma\in\Gamma}<\infty,$
- $X = \overline{\text{span}}^{\|\cdot\|} (P_{\gamma}X)_{\gamma \in \Gamma},$ and
- $X^* = \overline{\text{span}}^{\|\cdot\|} (P^*_{\gamma} X^*)_{\gamma \in \Gamma}$ (the system is 'shrinking').

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

•
$$P_{\alpha}P_{\beta} = 0$$
 whenever $\alpha \neq \beta$,

- 2 $\sup(\|P_{\gamma}\|)_{\gamma\in\Gamma}<\infty,$
- $X = \overline{\text{span}}^{\|\cdot\|}(P_{\gamma}X)_{\gamma\in\Gamma}, \text{ and }$
- $X^* = \overline{\text{span}}^{\|\cdot\|} (P^*_{\gamma} X^*)_{\gamma \in \Gamma}$ (the system is 'shrinking').

Examples

• If X has a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$, set $P_{\gamma}x = e_{\gamma}^*(x)e_{\gamma}$.

3

500

- 4 回 ト 4 ミト 4 ミト

 \bullet \square \bullet

Let Γ be an infinite set and let X support a system of non-zero projections $(P_{\gamma})_{\gamma \in \Gamma}$, such that:

•
$$P_{\alpha}P_{\beta} = 0$$
 whenever $\alpha \neq \beta$,

- 2 $\sup(\|P_{\gamma}\|)_{\gamma\in\Gamma}<\infty,$
- $X = \overline{\operatorname{span}}^{\|\cdot\|}(P_{\gamma}X)_{\gamma\in\Gamma}, \text{ and }$
- $X^* = \overline{\text{span}}^{\|\cdot\|} (P^*_{\gamma} X^*)_{\gamma \in \Gamma}$ (the system is 'shrinking').

Examples

- If X has a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$, set $P_{\gamma}x = e_{\gamma}^*(x)e_{\gamma}$.
- 2 If $X = C_0(M)$, where

$$M = \bigcup_{\gamma \in \Gamma} M_{\gamma},$$

is locally compact, scattered, and the discrete union of clopen sets M_{γ} , set $P_{\gamma}f = f \cdot \mathbf{1}_{M_{\gamma}}$.

32

500

The function θ

Definition

Given finite $F \subseteq \Gamma$, set

$$\rho(F) = \sup \left\{ \left\| \sum_{\gamma \in F} P_{\gamma}^* f \right\| : f \in X^* \text{ and } \left\| P_{\gamma}^* f \right\| \leq 1 \text{ whenever } \gamma \in F \right\}.$$

Ð.

The function θ

Definition

Given finite $F \subseteq \Gamma$, set

$$\rho(F) = \sup \left\{ \left\| \sum_{\gamma \in F} P_{\gamma}^* f \right\| : f \in X^* \text{ and } \left\| P_{\gamma}^* f \right\| \leq 1 \text{ whenever } \gamma \in F \right\}.$$

Let $p_k(f)$ be the *k*th largest element of $ran(f) := \{ \| P^*_{\gamma} f \| : \gamma \in \Gamma \}$, and let

$$G_k(f) = \left\{ \gamma \in \operatorname{supp}(f) : \left\| P_{\gamma}^* f \right\| \ge p_k(f) \right\}.$$

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 回 > < 国 > < 国 > < 国 > 、

The function θ

Definition

Given finite $F \subseteq \Gamma$, set

$$\rho(F) = \sup \left\{ \left\| \sum_{\gamma \in F} P_{\gamma}^* f \right\| : f \in X^* \text{ and } \left\| P_{\gamma}^* f \right\| \leq 1 \text{ whenever } \gamma \in F \right\}.$$

Let $p_k(f)$ be the *k*th largest element of $ran(f) := \{ \| P^*_{\gamma} f \| : \gamma \in \Gamma \}$, and let

$$G_k(f) = \left\{ \gamma \in \operatorname{supp}(f) : \left\| P_{\gamma}^* f \right\| \ge p_k(f) \right\}.$$

Definition

Define $heta:X^* o [0,\infty]$ by

$$\theta(f) = \sum_{k=1}^{\infty} (p_k(f) - p_{k+1}(f)) \rho(G_k(f)).$$

Э.

500

<ロト < 団 > < 巨 > < 巨 >

Theorem (S, Troyanski 2018)

Let X have a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$, and let $\|\cdot\|$ have a boundary B such that $\theta(f) < \infty$ whenever $f \in B$. Then $\|\cdot\|$ can be approximated by norms having σ -w*-LRC and w*-K_{σ} boundaries.

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < □ > < □ > < □ > < □ > < □ > <

Theorem (S, Troyanski 2018)

Let X have a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$, and let $\|\cdot\|$ have a boundary B such that $\theta(f) < \infty$ whenever $f \in B$. Then $\|\cdot\|$ can be approximated by norms having σ -w*-LRC and w*-K_{σ} boundaries.

Consequently, $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ _ 圖

Theorem (S, Troyanski 2018)

Let X have a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$, and let $\|\cdot\|$ have a boundary B such that $\theta(f) < \infty$ whenever $f \in B$. Then $\|\cdot\|$ can be approximated by norms having σ -w*-LRC and w*-K_{σ} boundaries.

Consequently, $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

Corollary (S, Troyanski 2018)

Let X have a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$ and suppose $\theta(f) < \infty$ for all $f \in X^*$. Then **every** norm on X can be approximated by both C^{∞} -smooth norms and polyhedral norms.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (S, Troyanski 2018)

Let X have a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$, and let $\|\cdot\|$ have a boundary B such that $\theta(f) < \infty$ whenever $f \in B$. Then $\|\cdot\|$ can be approximated by norms having σ -w*-LRC and w*-K_{σ} boundaries.

Consequently, $\|\cdot\|$ can be approximated by both C^{∞} -smooth norms and polyhedral norms.

Corollary (S, Troyanski 2018)

Let X have a shrinking bounded M-basis $(e_{\gamma}, e_{\gamma}^*)_{\gamma \in \Gamma}$ and suppose $\theta(f) < \infty$ for all $f \in X^*$. Then **every** norm on X can be approximated by both C^{∞} -smooth norms and polyhedral norms.

Example (Bible, S 2016)

On $c_0(\Gamma)$, $\rho(F) = |F|$ and $\theta(f) = ||f||_1$. Hence the above applies.

34

1-symmetric bases

Let $(e_{\gamma})_{\gamma \in \Gamma}$ be a shrinking 1-symmetric basis of X. Define

$$\lambda(n) = \left\|\sum_{k=1}^{n} e_{\gamma_k}\right\|$$
 and $\mu(n) = \left\|\sum_{k=1}^{n} e_{\gamma_k}^*\right\|$

where $\gamma_1, \ldots, \gamma_n$ is any choice of *n* distinct elements of Γ .

Э.

SQ (P

< □ > < □ > < □ > < □ > < □ > .

Let $(e_{\gamma})_{\gamma \in \Gamma}$ be a shrinking 1-symmetric basis of X. Define

$$\lambda(n) = \left\|\sum_{k=1}^{n} e_{\gamma_k}\right\|$$
 and $\mu(n) = \left\|\sum_{k=1}^{n} e_{\gamma_k}^*\right\|$,

where $\gamma_1, \ldots, \gamma_n$ is any choice of *n* distinct elements of Γ .

Proposition (S, Troyanski 2018)

Let X have a shrinking 1-symmetric basis $(e_{\gamma})_{\gamma \in \Gamma}$. Then $\theta(f) < \infty$ for all $f \in X^*$ if and only if

$$\sup\left\{\left\|\sum_{k=1}^n(\mu(k+1)-\mu(k))\boldsymbol{e}_{\gamma_k}\right\|\ :\ n\in\mathbb{N}\right\}\ <\ \infty,$$

where $\gamma_1, \gamma_2, \gamma_3 \ldots \in \Gamma$ are distinct (the choice is irrelevant).

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > <

Corollary (S, Troyanski 2018)

Let X have a shrinking 1-symmetric basis $(e_{\gamma})_{\gamma\in\Gamma}$. If

$$\sup\left\{\left\|\sum_{k=1}^{n}(\mu(k)-\mu(k-1))\boldsymbol{e}_{\gamma_{k}}\right\| : \boldsymbol{n}\in\mathbb{N}\right\} < \infty,$$

or if

$$\sup\left\{\left\|\sum_{k=1}^n\frac{e_{\gamma_k}}{\lambda(k)}\right\|: n\in\mathbb{N}\right\} < \infty,$$

then every norm on X can be approximated by C^{∞} -smooth norms and polyhedral norms.

32.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶▲□▶▲□▶▲□▶

Preduals of Lorentz spaces

Let Γ be a set and $w = (w_i) \in \ell_{\infty} \setminus \ell_1$ a decreasing sequence of positive numbers.

Example

The predual of Lorentz space $X := d_*(w, 1, \Gamma)$ has a shrinking 1-symmetric basis.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Preduals of Lorentz spaces

Let Γ be a set and $w = (w_i) \in \ell_{\infty} \setminus \ell_1$ a decreasing sequence of positive numbers.

Example

The predual of Lorentz space $X := d_*(w, 1, \Gamma)$ has a shrinking 1-symmetric basis.

We have $\theta(f) = ||f||$ for all $f \in X^*$ and

$$\left\|\sum_{k=1}^n (\mu(k+1) - \mu(k))\boldsymbol{e}_{\gamma_k}\right\| = \left\|\sum_{k=1}^n \boldsymbol{w}_k \boldsymbol{e}_{\gamma_k}\right\| = 1, \quad n \in \mathbb{N}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Preduals of Lorentz spaces

Let Γ be a set and $w = (w_i) \in \ell_{\infty} \setminus \ell_1$ a decreasing sequence of positive numbers.

Example

The predual of Lorentz space $X := d_*(w, 1, \Gamma)$ has a shrinking 1-symmetric basis.

We have $\theta(f) = ||f||$ for all $f \in X^*$ and

$$\left\|\sum_{k=1}^n (\mu(k+1) - \mu(k))\boldsymbol{e}_{\gamma_k}\right\| = \left\|\sum_{k=1}^n \boldsymbol{w}_k \boldsymbol{e}_{\gamma_k}\right\| = 1, \qquad n \in \mathbb{N}.$$

Hence every norm on X can be approximated by C^{∞} -smooth norms and polyhedral norms.

 $\nabla Q \cap$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let Γ be a set and $M : [0, \infty) \to [0, \infty)$ a non-degenerate Orlicz function.

Example

The **Orlicz space** $X := h_M(\Gamma)$ has a shrinking 1-symmetric basis.

32.

SQ (P

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Let Γ be a set and $M : [0, \infty) \rightarrow [0, \infty)$ a non-degenerate Orlicz function.

Example

The **Orlicz space** $X := h_M(\Gamma)$ has a shrinking 1-symmetric basis.

We have

$$\sup\left\{\left\|\sum_{k=1}^n(\mu(k+1)-\mu(k))\boldsymbol{e}_{\gamma_k}\right\|: n\in\mathbb{N}\right\} < \infty,$$

3

500

Let Γ be a set and $M : [0, \infty) \to [0, \infty)$ a non-degenerate Orlicz function.

Example

The **Orlicz space** $X := h_M(\Gamma)$ has a shrinking 1-symmetric basis.

We have

$$\sup\left\{\left\|\sum_{k=1}^n(\mu(k+1)-\mu(k))\boldsymbol{e}_{\gamma_k}\right\|: n\in\mathbb{N}\right\} < \infty,$$

if and only if *M* satisfies the 'summability condition':

$$\sum_{n=1}^{\infty} M\left(\frac{M^{-1}(\frac{1}{n})}{K}\right) < \infty, \quad \text{for some } K > 1.$$

38

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Let Γ be a set and $M : [0,\infty) \to [0,\infty)$ a non-degenerate Orlicz function.

Example

The **Orlicz space** $X := h_M(\Gamma)$ has a shrinking 1-symmetric basis.

We have

$$\sup\left\{\left\|\sum_{k=1}^n(\mu(k+1)-\mu(k))\boldsymbol{e}_{\gamma_k}\right\|: n\in\mathbb{N}\right\} < \infty,$$

if and only if *M* satisfies the 'summability condition':

$$\sum_{n=1}^{\infty} M\left(\frac{M^{-1}(\frac{1}{n})}{K}\right) < \infty, \quad \text{for some } K > 1.$$

In this case every norm on X can be approximated by C^{∞} -smooth norms and polyhedral norms.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

C(K) spaces

C(K) spaces

Proposition (Marciszewski 2003)

If $C(K) \hookrightarrow c_0(\Gamma)$ for some set Γ , then $K^{(n)} = \emptyset$ for some $n \in \mathbb{N}$.

32

SQ (P

<ロ > < 回 > < 回 > < 回 > < 回 > <

C(K) spaces

Proposition (Marciszewski 2003)

If $C(K) \hookrightarrow c_0(\Gamma)$ for some set Γ , then $K^{(n)} = \emptyset$ for some $n \in \mathbb{N}$.

Theorem (S, Troyanski 2018)

Let α be an ordinal. There exists a compact scattered space K such that $K^{(\alpha)} \neq \emptyset$, and any norm on C(K) can be approximated by C^{∞} -smooth norms and polyhedral norms.

SQ Q

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C(K) spaces

Proposition (Marciszewski 2003)

If $C(K) \hookrightarrow c_0(\Gamma)$ for some set Γ , then $K^{(n)} = \emptyset$ for some $n \in \mathbb{N}$.

Theorem (S, Troyanski 2018)

Let α be an ordinal. There exists a compact scattered space K such that $K^{(\alpha)} \neq \emptyset$, and any norm on C(K) can be approximated by C^{∞} -smooth norms and polyhedral norms.

Problem

Can every norm on $C([0, \omega_1])$ be approximated by C^1 -smooth norms or polyhedral norms?

SQ Q

(日)

Problems

Problems

Problems

• Can every norm on $\ell_2(\Gamma)$ be approximated by C^2 -smooth norms?

32.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problems

Problems

Problems

- Can every norm on $\ell_2(\Gamma)$ be approximated by C^2 -smooth norms?
- 2 Can every norm on $C([0, \omega_1])$ be approximated by C^1 -smooth norms or polyhedral norms?

34

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Problems

Problems

Problems

- Can every norm on $\ell_2(\Gamma)$ be approximated by C^2 -smooth norms?
- 2 Can every norm on $C([0, \omega_1])$ be approximated by C^1 -smooth norms or polyhedral norms?
- Solution K be a compact scattered space with $K^{(3)} = \emptyset$. Can every norm on C(K) be approximated by C^2 -smooth norms or polyhedral norms?

- 32

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ロ > < 同 > < 三 > < 三 > 、